The radiative forcing due to clouds and water vapor
نویسندگان
چکیده
As the previous chapters have noted, the climate system is forced by a number of factors, e.g., solar impact, the greenhouse effect, etc. For the greenhouse effect, clouds, water vapor, and CO2 are of the utmost importance. The emergence of computers as a viable scientific tool in the 1960s in conjunction with the availability of spectroscopic data enabled us to treat the numerous complexities of infrared-radiative transfer in the atmosphere. While such calculations set the stage for estimating accurately (decades later in the 1990s) the radiative forcing due to greenhouse gases and clouds, they did not yield the necessary insights into the physics of the problem nor did they yield any explanation of the relevant phenomenon. Such insights needed physically based analytic approaches to the problem. It is in this arena that Dr. Robert Cess excelled and provided the community with important insights into numerous radiative processes in the atmosphere of Earth and other planets including Mars, Venus, Jupiter, and Saturn. A few examples that are relevant to the main theme of this chapter are given below. Within the lower atmosphere of many planets (first 10 km of Earth; 5 km for Mars; and 60 km for Venus) the greenhouse effect is dominated by pressure-broadened vibration–rotational lines (e.g., CO2 and CH4) or pure rotational lines (H2O) of polyatomic gases. Typically, the absorption and emission of radiation occurs in discrete bands with thousands of rotational lines within each band. Even with modern day supercomputers it is impossible to estimate the radiative transfer due to all of these lines and bands through the atmosphere for the entire planet. Thus a three-dimensional characterization of the radiative heating rates from equator to pole using the line-by-line approach is impractical. What is normally done is to use
منابع مشابه
Atmospheric response and feedback to radiative forcing from biomass burning in tropical South America
Simulations are performed to understand the importance of smoke from biomass burning in tropical South America to regional radiation and climate. The National Center for Atmospheric Research (NCAR) regional climate model coupled with the NCAR column radiative model is used to estimate smoke direct radiative forcing and consequent atmospheric perturbations during a smoke season in this region. T...
متن کاملThe global impact of supersaturation in a coupled chemistry-climate model
Ice supersaturation is important for understanding condensation in the upper troposphere. Many general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM), is modified to include supersaturation for the ice phase. Rather than a study of a detailed parameterization of supersaturation, the...
متن کاملEarth ’ s Annual Global Mean Energy Budget J . T . Kiehl and Kevin
The purpose of this paper is to put forward a new estimate, in the context of previous assessments, of the annual global mean energy budget. A description is provided of the source of each component to this budget. The top-ofatmosphere shortwave and longwave flux of energy is constrained by satellite observations. Partitioning of the radiative energy throughout the atmosphere is achieved throug...
متن کاملSolar radiation budget and radiative forcing due to aerosols and clouds
[1] This study integrates global data sets for aerosols, cloud physical properties, and shortwave radiation fluxes with a Monte Carlo Aerosol-Cloud-Radiation (MACR) model to estimate both the surface and the top-of-atmosphere (TOA) solar radiation budget as well as atmospheric column solar absorption. The study also quantifies the radiative forcing of aerosols and that of clouds. The observatio...
متن کاملLongwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra
[1] Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth’s Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006